Handball, a fast-paced and highly dynamic sport, often sees fluctuating goal tallies in its matches. For those looking to place bets on tomorrow's games, understanding the nuances of scoring trends is crucial. The "Over 53.5 Goals" market is particularly intriguing, as it requires a deep dive into team performances, historical data, and expert predictions. This analysis aims to provide a comprehensive guide for bettors interested in this category.
No handball matches found matching your criteria.
Several factors can influence the likelihood of a match exceeding 53.5 goals:
Tomorrow's handball schedule features several high-stakes matches that could tip the scales in favor of the "Over 53.5 Goals" market. Here's a breakdown of the key fixtures:
Team A has been on a scoring spree recently, averaging over 30 goals per match. Their opponents, Team B, have struggled defensively, conceding an average of 28 goals per game. This matchup is a classic high-scoring affair, making it an ideal candidate for the "Over 53.5 Goals" bet.
Both teams are known for their aggressive playstyles. Team C has a potent offense, while Team D is equally formidable in attack but has shown vulnerability at the back. This clash promises fireworks and is worth considering for bettors looking to capitalize on high goal totals.
This match features two evenly matched teams with balanced records. However, both have shown flashes of brilliance in recent games, suggesting that this encounter could easily surpass the goal threshold.
To make informed betting decisions, it's essential to analyze each team's performance metrics:
To maximize your chances of success when betting on "Over 53.5 Goals," consider the following strategies:
This match is expected to be a high-scoring affair, with both teams eager to assert dominance. Given Team A's offensive prowess and Team B's defensive struggles, a total over 53.5 goals is highly probable.
The clash between Team C and Team D is anticipated to be an explosive encounter. Both teams have shown they can score heavily, making this match a prime candidate for exceeding the goal threshold.
This evenly matched contest could go either way, but both teams have demonstrated their ability to score in bunches recently. It's worth considering this match for an "Over" bet.
"When betting on 'Over' markets, always consider the context of the match—team form, head-to-head history, and current injuries can all play pivotal roles." — Expert Bettor #1<|repo_name|>carlosdanielr/CoTeaching-ResNet<|file_sep|>/models/ctresnet.py import torch import torch.nn as nn import torch.nn.functional as F from .resnet import ResNet class CoTeachingResNet(ResNet): def __init__(self, num_classes, block, layers, loss_fn, drop_rate=0., dropblock_size=7, gamma_scale=3): super(CoTeachingResNet, self).__init__(block, layers, num_classes=num_classes) self.drop_rate = drop_rate self.loss_fn = loss_fn self.gamma_scale = gamma_scale if drop_rate > .0: self.dropblock_size = dropblock_size self.dropblocks = nn.ModuleList() total_blocks = sum(layers) cur_block_idx = -1 cur_block_size = self.layer1[0].conv1.kernel_size[0] for block_idx in range(total_blocks): if block_idx == total_blocks - layers[-1]: cur_block_idx +=1 cur_block_size = self.layer2[block_idx - layers[0]].conv1.kernel_size[0] elif block_idx == total_blocks - sum(layers[:-1]): cur_block_idx +=1 cur_block_size = self.layer3[block_idx - sum(layers[:-1])].conv1.kernel_size[0] else: cur_block_size = self.layer4[block_idx - sum(layers[:-2])].conv1.kernel_size[0] #if cur_block_size != dropblock_size: # continue dropblock = DropBlock2D(drop_prob=drop_rate, block_size=dropblock_size) self.dropblocks.append(dropblock) if loss_fn == 'nll': pass elif loss_fn == 'kl': self.T = nn.Parameter(torch.ones(1) * .9) else: raise ValueError('Invalid loss function') def forward(self, x, target=None): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if self.drop_rate > .0: x = self.dropblocks[0](x) x = self.layer2(x) if self.drop_rate > .0: x = self.dropblocks[layers[0]:].__getitem__(layers[1])(x) x = self.layer3(x) if self.drop_rate > .0: x = self.dropblocks[layers[0]+layers[1]:].__getitem__(layers[2])(x) x = self.layer4(x) if self.drop_rate > .0: x = F.dropout(x, p=self.drop_rate, training=self.training) x_avg = F.adaptive_avg_pool2d(x, (1,1)) x_max = F.adaptive_max_pool2d(x,(1,1)) x_avg_max = torch.cat([x_avg,x_max], dim=1) x_avg_max_flatten = x_avg_max.view(x_avg_max.size(0), -1) y_pred = F.log_softmax(self.fc(x_avg_max_flatten), dim=1) if target is None: return y_pred # compute loss if target is not None: assert target.size(0) == y_pred.size(0), '{} vs {}'.format(target.size(0), y_pred.size(0)) losses_all_element_wise = self.loss(y_pred,target) losses_all_sample_wise_mean = losses_all_element_wise.mean(dim=1) losses_sorted,_ = losses_all_sample_wise_mean.sort() # Get indices of smallest k% losses mask_percentile_index = int(losses_sorted.size(0)*self.gamma_scale/100.) mask_smallest_k_percent_index_baseball_rule_1_by_3 = mask_percentile_index//3 mask_smallest_k_percent_index_baseball_rule_2_by_3 = (mask_percentile_index*2)//3 mask_smallest_k_percent_index_baseball_rule_3_by_3 = mask_percentile_index # Get smallest k% losses mask_smallest_k_percent_losses_baseball_rule_1_by_3 = losses_sorted[:mask_smallest_k_percent_index_baseball_rule_1_by_3] mask_smallest_k_percent_losses_baseball_rule_2_by_3 = losses_sorted[ :mask_smallest_k_percent_index_baseball_rule_2_by_3] mask_smallest_k_percent_losses_baseball_rule_3_by_3 = losses_sorted[ :mask_smallest_k_percent_index_baseball_rule_3_by_3] # Get largest k% losses mask_largest_k_percent_losses_baseball_rule_1_by_3 = losses_sorted[mask_smallest_k_percent_index_baseball_rule_1_by_3:] mask_largest_k_percent_losses_baseball_rule_2_by_3 = losses_sorted[ mask_smallest_k_percent_index_baseball_rule_2_by_3:] mask_largest_k_percent_losses_baseball_rule_3_by_3 = losses_sorted[ mask_smallest_k_percent_index_baseball_rule_3_by_3:] # # Get largest k% losses # mask_largest_k_percent_losses = # losses_sorted[mask_smallest_k_percent_index:] # # # Get indices of largest k% losses # indices_largest_k_percent_losses,_ = # mask_largest_k_percent_losses.sort(descending=True) # # Get indices of smallest k% losses # indices_smallest_k_percent_losses,_ = # mask_smallest_k_percent_losses.sort() # # Create sample masks using indices # sample_mask_largest_k_percent_losses = # torch.zeros(target.size(0), # dtype=torch.bool).cuda() # sample_mask_largest_k_percent_losses[ # indices_largest_k_percent_losses] = True # sample_mask_smallest_k_percent_losses = # torch.zeros(target.size(0), # dtype=torch.bool).cuda() # sample_mask_smallest_k_percent_losses[ # indices_smallest_k_percent_losses] = True <|file_sep|># CoTeaching-ResNet An implementation of [Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels](https://arxiv.org/abs/1708.04896) using PyTorch. ## Pre-requisites This code requires Python >= `>= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python >= Python ==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` `==` It also requires [PyTorch](https://pytorch.org/) and [torchvision](https://github.com/pytorch/vision). ## Usage ### CIFAR-10 To train a CoTeaching ResNet-20 on CIFAR-10 with label noise rate up to `.8`, run: shell script python main.py --data_dir /path/to/cifar10 --epochs=200 --batch-size=128 --lr=10e-6 --momentum=.9 --wd=5e-4 --noise-rate=.8 --loss-fn kl --gamma-scale=50 --seed=42 --model ctresnet20_cifar10_resnet20_nll_hierarchical_no_dropout_gamma_scale50_seed42.pth.tar The model will be saved in `/path/to/cifar10/checkpoints`. ### CIFAR-100 To train a CoTeaching ResNet-32 on CIFAR-100 with label noise rate up to `.8`, run: shell script python main.py --data_dir /path/to/cifar100 --epochs=200 --batch-size=128 --lr=10e-6 --momentum=.9 --wd=5e-4 --noise-rate=.8 --loss-fn kl --gamma-scale=50 --seed=42 --model ctresnet32_cifar100_resnet32_nll_hierarchical_no_dropout_gamma_scale50_seed42.pth.tar The model will be saved in `/path/to/cifar100/checkpoints`. <|repo_name|>carlosdanielr/CoTeaching-ResNet<|file_sep|>/models/dropblock.py import torch.nn as nn def _ntuple(n): def parse(x): if isinstance(x,int): return tuple([x]*n) elif isinstance(x,tuple): assert len(x) == n,'expected {} values (got {})'.format(n,len(x)) return x else: raise ValueError('expected int or tuple (got {})'.format(type(x))) return parse to_ntuple=_ntuple(2) class DropBlock(nn.Module): def __init__(self, drop_prob, block_size): super(DropBlock,self).__init__() assert block_size >0,'block size must be positive' print(block_size) print('drop_prob',drop_prob,'block_size',block_size) print('BATCHNORM') <|repo_name|>carlosdanielr/CoTeaching-ResNet<|file_sep|>/main.py import os.path as osp import torch.optim as optim from datasets import get_dataloader_cifar10,get_dataloader_cifar100,get_testloader_cifar10,get_testloader_cifar100 from models import CoTeachingResNet20,CteachingResNet32 def main(): if __name__=='__main__': <|repo_name|>carlosdanielr/CoTeaching-ResNet<|file_sep|>/datasets/datasets.py import torchvision.datasets as datasets def get_dataloader_cifar10(root_dir='./data', batch_size=128, noise_rate=.8): def get_dataloader_cifar100(root_dir='./data', batch_size=128, noise_rate=.8): def get_testloader_cifar10(batch_size=128): def get_testloader_cifar100(batch_size=128): <|file_sep|>documentclass{article} usepackage{amsmath} usepackage{amssymb} usepackage{bm} title{Optimization Notes} author{Joshua Ippolito} date{today} begin{document} maketitle section{Motivation} Consider an optimization problem with $n$ variables $bx in mathbb{R}^n$ which we want to minimize over some objective function $f(bx)$ subject to some constraints $c_i(bx) leq b_i$ where $i in {1,dots,m}$. We want our algorithm(s) to satisfy four properties: begin{enumerate} item textbf{Feas